Biology 150: 3 rd in-class examination Name Assures
Indicate the lab you are <u>registered</u> in:
Tuesday, 9:00-10:50; Tuesday, 11:00-12:50; Tuesday, 1:00-2:50
Answer the questions in the space provided and you may also use the back of the page to complete your response. There are 24 questions worth a total of 50 points. There are also plus two bonus questions worth a total of 5 points. The point value of individual questions appears in parentheses.
 For a certain reaction the K_{eq} equal 2. If, at chemical equilibrium the concentration of the reactants is 1 M, what is the concentration of the products? (1) Keg = 2 = [Pd+] [read-whs] = [M]
 Comparing an enzyme catalyzed reaction to the same reaction uncatalyzed: (1) a) ΔG is more negative b) ΔG is more positive c) E_A is smaller d) both a and c e) none of the above
2. The location on an enzyme where the catalyzed reaction takes place is called active Site (1).
3. Enzymes are said to be highly specific. What does this mean? (1) generally each different type of enzyme catalyze only one type of reaction.
4. Describe and/or diagram the catalytic cycle of an enzyme. What happens in what order? Roughly how fast can the cycle occur with a typical enzyme? (3) A B Construction (Substrates) lodge in the the active site (2) bonds may be strained or atoms pushed fogether to loso for pushed fogether to loso for no longer fit in the active site and fare allowing fractive site to actalyze another reaction. 5. Enzymes are often regulated by chemical modification. What functional group is most often attached to or removed from one or more amino acid increasing or decreasing enzyme activity. (1) Phosphale

6. Contrast competitive enzyme inhibition and non-competitive inhibition. How do they differ? Which of these is a form of allosteric regulation? (3)
- in competative whiletim the inhibitor-binds to /in the active site - blocking binding of the substrates
- in non-completative inhibition the inhibitor binds other than at the active site - changing the
shape of the profesor and of the a active site reducil binding efficiency of the substrates)
7. ATP hydrolysis is frequently used to provide the energy to drive otherwise energetically unfavorable reactions in so called "coupled reactions". Explain, and/or diagram, how this actually occurs. (3) — phosphorylateon of a substate molecule (by ATP) renders a more energetic substate molecule that can now react more exergonically
ATP Sensum ASO RESON - COLLEGE
8. Cooperativity is another form of enzyme regulation. Explain and give an example of a protein subject to this type of regulation. (3)
- binding at substrate of to the active sile of one subunit of a smultisubunit enzyme
- this causes the other subunits to change shape improving the sabstate binding (allosteric activation
9. Pound for pound which is more energy rich (contains more chemical potential energy) fats or sugars? Explain why this is true. (2)
because most curbons are bonded to only (+ H (c-c-c) while sugars are already party oxidized c-c-c
while sugars are already
10. Define respiration. (1) Puty oxdized
(>) oxidation of fuel of the molecules by cells.

11. Outline glycolysis. Indicate the starting molecule, the use and production (and how many) of energy and electron carrier molecules. Name at least one intermediate molecule and the resulting partially oxidized product molecule(s). (4) 12. What happens in pyruvate oxidation? (1) - Dacityl Cot 13. Outline the Kreb's (citric acid) cycle. What molecule donates carbon to the pathway combining with what four carbon molecule? What six carbon molecule is produced? In a single turn of the cycle indicate the important redox reactions and any ATP produced. What is the fate of the donated carbon molecules? (4) Do citricacid (GC) 14. What is chemiosmosis? (1) - a hydrogen ion gradient across a membrane (established by electron transport) available to-do work.

ATP. Explain exactly where those numbers come from. (4)
phosphorglation. Krebscyclae - 2 ATP
NYONATT - HAR
9 colysis 2 (except Heart = 2 FAU Hz) 3 => 8 NAD. 2x Pyravataoxidation = 2 Oxidation and Grand Strangenton 4 FAD H
glycolysis 2 (except Hearth 27 1012) 38 NAD
2x Pyravatroxidation = 2 Oxidation order
24 Krebs 10 -> X25ATP=25ATO ZGATP
the same of the sa
27 Krobs 2MADH2-32 -> X15 -> 3ATP 1 +4
16. In fermentation by yeast, what becomes of the end product of glycolysis? What is the function of fermentation? (3)
pyrnvate Elhanol + Cos
Straver FCOS
Ha Ha
NADH NADT"
- the function of fermentation is to exidize NADH to NAD+
and two allow alycolysis to antique
17. How does respiration consume fats? (2)
alycorol
Fats Boxidetion -> 20-10 BA -> 900/1/1
nydrelysis Fallyacids -> Boxidation -> 20-15 (6A -> 400)
Ky Co5
18. During active exercise is the pH of the matrix higher, the same, or lower than that of the intermembrane space? (1)
higher DH ([H+] would be lower)
Migher DA (Ell 3 woods de loader)
19. Why can't distance runners (i.e. marathoners) run as fast milers? (1)
they can only maintain a erobic capacity Munning (like miles) using glycogen—but as the supply is limited must vely spartly on fat burning but Boxidation is
19. Why can't distance runners (i.e. marathoners) run as fast milers? (1) they can only Maintain a Drobic Capacity Munning (like milers) using glycogen—but as the supply is limited must sley spartly on fat burning but Boxidation is Slawer than aerobic capacity.

 20. Which of the following correctly outlines the path of electrons in non-cyclic photophosphorylation: (1) a) H₂0 → NADPH → electron transport → photosystem I → electron transport → photosystem II b) H₂0 → photosystem II → electron transport → NADPH → electron transport → photosystem I c) H₂0 → photosystem II → electron transport → photosystem I → electron transport → NADPH d) NADPH → photosystem II → electron transport → photosystem I → electron transport → H₂0 e) H₂0 → photosystem I → electron transport → photosystem II → electron transport → NADPH
21. During active photosynthesis is the pH of the thylakoid lumen higher, the same, or lower than that of the stroma? (1) Ower (IH+T will be higher)
22. What photosystem is involved in cyclic photophosphorylation? Describe how useful energy is captured by cyclic photophosphorylation. (3) - Protosystem I - an excited electron is passed from PSI to the primary electron acaptor and then to a series of electron transporters, finally back to chlorophyll A of the PSI reaction back to chlorophyll A of the PSI reaction that the function of the thatoid, Chemiosmosis then drives ATP
Rubisco. Show the use of energy carrier molecules. (3)
Rubiscolenzyme) PG-A PG-A PADP NADPH NA

24. What other reaction (besides carbon fixation) does rubisco catalyze? (1)

Photo respiration

Bonus questions:

1) DNP (2,4-dinitrophenol) is a lipid soluble base. It collapses pH gradients across membranes because it will tend to bind to H⁺ on the side of the membrane where it is in higher concentration and dissociate on the other side. What effect would you predict DNP will have on Oxygen consumption. Explain your answer. (2) DNP will collapse the H gradient (eliminale chemiosmosis). Oxidative thosphorylation (ATP synthesis) will fall. Because the cell continues to use ATP, the ATP concentration will fall as oxidative phosphoriation decreases. ATP blocks the reaction catalysed by phosphorhationse (feedback inhibition of glycolysis). Glycolysis will therefore encrease. Rising levels of pyruvate will increase 2) The therapeutic index for DNP is about 3 and for ethanol it about 20 and for THC (tetrahydrocannabinol; the active ingredient in cannabis) is greater than 10,000. What is the therapeutic index? Which of these drugs is more dangerous and why? (3) Therapeutic index = lethal dose The therapeutic index is a measure of how close the lethal dose ("overdose) of a rug is to the effective dose and therefore how dangerous the drug, i the lethal dose is close to the effection dose it is easy to take foomuch The small the number the more Longerous - DNP is therefor e most dangerous a Alcohol (ethanol) is dongerous as well (but less 50) while THC repressents no vist at all,