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Abstract.—The salamander family Plethodontidae is characterized by the absence of lungs. In
1920, I. W. Wilder and E. R. Dunn proposed that lunglessness evolved as an adaptation for life
in flowing streams. However, J. A. Ruben and A. J. Boucot recently suggested that protopletho-
dontids had no access to the mountainous terrain associated with fast-flowing stream habitats.
They further suggested that plethodontids lost lungs for reasons other than ballast. We cite
evidence contradicting Ruben and Boucot’s geological interpretation. We contend that the
Wilder-Dunn hypothesis remains a robust one and argue that the life-history pattern exhibited by
the primitive members of the family (e.g., Gyrinophilus, Pseudotriton) suggests that lunglessness
evolved as a rheotropic adaptation that promoted primarily larval, not adult, survival in streams.
We review evidence on the life history, ecology, morphology, and physiology of larval salaman-
ders that supports the Wilder-Dunn hypothesis.

Wilder and Dunn (1920) proposed that lunglessness in the salamander family
Plethodontidae is an adaptation to mountain stream habitats that reflects the ori-
gin of the family in the Appalachian highlands. Ruben and Boucot (1989) recently
challenged this hypothesis, arguing that late Mesozoic Appalachia—the hypothe-
sized time and place of plethodontid origin (Wake 1966)—lacked the mountainous
terrain that provided the selective environment for lung loss in aquatic environ-
ments. Their hypothesis had six elements. First, plethodontids may have evolved
from semiterrestrial or terrestrial ancestors, similar to extant ambystomatids.
Second, the origin of plethodontids occurred in warm, lowland environments.
Third, loss of lungs was associated with selection for reduced head width, perhaps
as a biomechanical adaptation. Fourth, decrease in head width resulted in de-
creased pulmonary efficiency, which required greater reliance on cutaneous respi-
ration. Fifth, the shift in respiratory function was accompanied by a trend toward
a more sedentary way of life. Finally, lungs were lost completely.

In this article, we review geological evidence contradicting Ruben and Boucot’s
claim that late Mesozoic Appalachia lacked upland environments. We then evalu-
ate the evidence offered by Wilder and Dunn in support of their hypothesis. We
argue that the strength of the Wilder-Dunn hypothesis lies in its emphasis on
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the advantages of lunglessness for larval, rather than adult, survival in stream
environments.

LATE MESOZOIC APPALACHIAN TOPOGRAPHY

In their review, Ruben and Boucot rejected the rheotropic adaptation hypothe-
sis based on geological information (drawn primarily from Dunbar [1964]) that
suggests that the entire Appalachian chain was reduced to a peneplane in the late
Mesozoic era. If such a scenario were true, then no mountains existed in the
late Mesozoic to provide plethodontids with their hypothesized ancestral habitat,
fast-flowing cool streams.

Figure 1 of Ruben and Boucot’s article (taken from Dunbar [1964]) is mis-
leading, inasmuch as the authors claimed to present a history of the ‘‘evolution
of Appalachian topography’’ (Dunbar 1964, p. 163). The figure actually represents
the “‘evolution of the modern topography of the Middle Appalachian region’’
(Dunbar 1964, p. 403, fig. 256). This is an important distinction. Dunbar (1964,
pp. 401-402) further stated that ‘‘nearly all the Appalachian region was pene-
planed, the exception being a chain of monadnocks rising 2000 or 3000 feet along
the border between eastern Tennessee and North Carolina, and scattered hills in
northern New England’’ (Dunbar 1964, p. 402). These areas ‘‘show no evidence
of ever having been reduced to a level summit.”” This history of Appalachian
topography is corroborated by other authors (e.g., Stanley 1986). Thus, even
granted that the Plethodontidae originated in the late Mesozoic, Ruben and Bou-
cot’s statement (1989, p. 163) that ‘‘Mesozoic Appalachian proto-plethodontids
were most unlikely to have had access to fast-moving mountain brooks’’ is mis-
leading.

However, the time of origin for plethodontid salamanders is a point of debate.
The plethodontids are first found in the fossil record in the early Miocene, and
some authors have estimated that the plethodontids are more recent than the
Cretaceous (Naylor 1980; Carroll 1988). In contrast, there are data on ribosomal
RNA evolution that suggest that the Plethodontidae is a much older lineage (Lar-
son and Wilson 1989).

Late Mesozoic Appalachia apparently had mountainous areas and flat plains.
The question of interest concerns the ancestral adaptive zone of the Plethodonti-
dae. Did the plethodontids originate in the flat areas, and were they semiterrestrial
or terrestrial as suggested by Ruben and Boucot? Or were the ancestral pletho-
dontids semiaquatic or aquatic salamanders inhabiting upland environments, as
originally proposed by Wilder and Dunn?

WILDER AND DUNN’S HYPOTHESIS

It has been convincingly argued (Dunn 1926) and subsequently supported
(Wake 1966; Larson 1984) that the plethodontids originated and diversified in
eastern North America, particularly Appalachia. Southern Appalachia supports
more genera occupying more adaptive zones than any other geographical locale
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(Wake 1966, 1987). The phylogenetic relationships of the major groups of the
family have been reviewed by Wake (1966) and Larson (1984), and the inferred
primitive forms are found in mountain stream habitats of southern Appalachia.
This suggests that the ancestral plethodontids inhabited upland stream environ-
ments.

Wilder and Dunn (1920) argued that the lungless condition of these salamanders
arose as an adaptation for a stream-dwelling existence. They cited Whipple’s
(1906a) contention that the lungs of salamanders function primarily as hydrostatic
mechanisms and only secondarily as respiratory organs. In conjunction with the
lungs, the ypsiloid apparatus aids in adjustment of position in the water. The
ypsiloid apparatus is also absent in the Plethodontidae (Whipple 1906a). Whitford
and Hutchison (1967) have demonstrated that the lungs of salamanders play a
substantial role in respiration only at higher temperatures and that the skin is the
primary mechanism of gas exchange.

In addition to the absence of lungs and the ypsiloid apparatus, other character-
istics that have been proposed as adaptations to a mountain stream existence
include the nasolabial groove and the condition of the otic apparatus. Whipple
(1906b) suggested that the nasolabial groove is an adaptation to aid in buccopha-
ryngeal respiration. Plethodontids can be observed extending their nares above
the surface of the water, whereupon buccopharyngeal pumping is initiated. The
nares are closed, and buccopharyngeal pumping does not occur when the sala-
mander is completely immersed. Plethodontids with their nasolabial grooves
blocked—and salamanders that lack nasolabial grooves—are unable to quickly
clear their nares of water; buccopharyngeal pumping does not occur when the
nares are blocked with water (Whipple 1906b). Buccopharyngeal respiration be-
comes more important upon loss of lungs but remains less important than cutane-
ous respiration. In addition to supplying any respiratory advantages, the nasolab-
ial groove aids olfaction in adult plethodontids, according to recent evidence
(Brown 1968; Jaeger and Gergits 1979; Dawley and Bass 1989); the nasolabial
groove is undeveloped in larvae. Furthermore, its presence serves as evidence
of the Plethodontidae as a monophyletic group, as emphasized by Dunn (1926).

The otic apparatus’ was discussed by Reed (1920), who was struck by the
retention of the columella, the otic structure of plethodontid larvae, in the adults
of many plethodontid species. Dunn (1926) subsequently suggested that the otic
apparatus was an adaptation of early plethodontid adults to habitats similar to
those of larvae (i.e., mountain streams).

In addition to morphological evidence, there are comparative data that suggest
lunglessness as a rheotropic adaptation (Dunn 1926; Wake 1966). In other sala-
mander families, such as Dicamptodontidae (Rhyacotriton), Salamandridae (Sala-
mandrina, Chioglossa, Euproctus), and Hynobiidae (Onychodactylus, Ranodon),
there are forms with reduced or absent lungs. All of these salamanders occupy
stream environments.

Given the weight of biogeographical, phylogenetic, morphological, and ecologi-
cal evidence, Wilder and Dunn (1920) concluded that lunglessness in the family
Plethodontidae is an adaptation to the fast-flowing streams of the southern Appa-
lachian Mountains.
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LUNGLESSNESS AS A LARVAL ADAPTATION

Those extant plethodontids that are inferred to be most similar to the ancestral
forms are the aquatic and semiaquatic members of the subfamily Plethodontinae
(tribe Hemidactyliini) and the subfamily Desmognathinae (Wake 1966; Larson
1984). These groups are limited in range to eastern North America and are most
diverse in the southern Appalachians. With three exceptions, the species of these
groups are characterized by a larval stage in the life history.

Ruben and Boucot (1989) totally overlooked the importance of larval forms.
We submit that consideration of larval physiology, morphology, ecology, and
life history lends support to the hypothesis that lunglessness is mainly a larval
adaptation.

Although plethodontid larvae lack lungs, they have external gills, which are
the primary respiratory surface in gilled salamanders (Guimond and Hutchison
1972). Salamandrid and ambystomatid larvae have lungs as well as gills; in these
salamanders, lungs are used as hydrostatic organs in pond environments, which
allows animals to maintain their position in the water column. Plethodontid larvae
are benthic, usually living under rocks or in leaf packs on the stream bottom
where lungs might provide disadvantageous buoyancy.

It is likely that selection for lunglessness would occur in the larval rather than
the adult stage of the life history. Although phylogenetic relationships within the
Desmognathinae and Hemidactyliini are not entirely clear, it is believed that the
species that most closely represent the ancestral condition are hemidactyliines
with lengthy larval periods, for example, Gyrinophilus porphyriticus, Pseudotri-
ton ruber, Pseudotriton montanus, and Stereochilus marginatus (Wake 1966).
These species have larval periods of 2 or more years, as do several species in the
closely related genus Eurycea and some desmognathines (table 1). This contrasts
sharply with the short larval periods (3—-9 mo) of rapid-growing biphasic ambysto-
matids and salamandrids.

We suggest that the length of the larval period was an important factor in
the evolution of lunglessness because of the deleterious effects of downstream
displacement of larvae by the water current (stream drift). The role of stream
drift in the biology of aquatic organisms has been explained under two alternative
hypotheses: the colonization hypothesis of Miiller (1954), which treats down-
stream drift as a process requiring compensatory upstream movements to avoid
population displacement, and the production hypothesis of Waters (1972),
wherein drift is viewed as a density-dependent response to excess productivity.
Larval plethodontids undergo drift, but its function is uncertain (Bruce 1986).
However, plethodontids usually inhabit small, low-order streams and are less
common or absent in larger, higher-order streams and rivers. The larvae are more
aquatic than the adults and thereby more susceptible to stream drift. Species with
brief larval periods would be expected to drift less during their larval life than
species with extended larval periods. Because prolonged exposure of stream-
dwelling salamanders with larval periods of 2—-5 yr to stream drift might have
deleterious effects, both on larval survival and on general population stability,
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TABLE 1

LARvAL PERIODS OF PLETHODONTID SALAMANDERS WITH BipHAsIC LiFE CYCLES

Larval
Period
Taxon (mo) Reference
Subfamily Desmognathinae:
Leurognathus marmoratus 10-36 Martof 1962; Bruce 1985a
Desmognathus quadramaculatus 24-48 Organ 1961; Bruce 1988
Desmognathus welteri 24 Juterbock 1984
Desmognathus monticola 9-10 Organ 1961; Bruce 1989
Desmognathus ochrophaeus 9-10 Organ 1961; Tilley 1973a, 1973b; Bruce
1989
Desmognathus fuscus 9-10 Wilder 1913; Organ 1961; Danstedt 1975;
. Juterbock 1990
Subfamily Plethodontinae, tribe
Hemidactyliini:
Gyrinophilus porphyriticus 36—-60 Bishop 1941; Bruce 1980
Pseudotriton ruber 30 Bishop 1941; Bruce 1972, 1974
Pseudotriton montanus 18-30 Bruce 1974, 1978
Stereochilus marginatus 15-27 Bruce 1971
Eurycea bislineata 24-36 Wilder 1924; Duellman and Wood 1954
Eurycea wilderae 12-24 Bruce 1982a, 1982b, 1985b
Eurycea junaluska 24 Bruce 1982b
Eurycea guttolineata 3-15 Bruce 19824
Eurycea longicauda 3 Anderson and Martino 1966
Eurycea quadridigitata 6 Semlitsch 1980
Eurycea multiplicata 8 Ireland 1976
Eurycea lucifuga . 12-15 Banta and McAtee 1906
Hemidactylium scutatum 1-2 Blanchard 1923
Typhlotriton spelaeus 29-30 Brandon 1971; Rudolph 1978

the advantage of lung loss would be greatest to the primitive species that have
the longest larval periods.

Plethodontid larvae, like other stream-dwelling salamander larvae, show mor-
phological adaptations (in addition to lung loss) that correlate with a stream exis-
tence (Valentine and Dennis 1964; Duellman and Trueb 1986). Relative to pond-
dwelling larvae, stream dwellers have small gills, a shallow caudal fin, and
dorsoventral depression. These characteristics streamline the larvae. The larvae
also have a muscular tail and, unlike pond larvae, hatch with well-developed,
muscular forelimbs that enhance crawling against a stream current.

Upon metamorphosis, plethodontids lose their gills and are left only with cuta-
neous and buccopharyngeal respiration. They usually become more terrestrial.
However, Leurognathus marmoratus is aquatic in cold mountain streams in the
Appalachians (Martof 1962), and Stereochilus marginatus is highly aquatic in
warm swampy habitats in the southeastern Coastal Plain (Bruce 1971). Other
streamside plethodontids may remain submerged for lonﬁ periods, particularly
females brooding their eggs in several species of Desmognathus, Gyrinophilus,
and Eurycea. Thus, many metamorphosed plethodontids, lacking lungs, derive
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sufficient oxygen via the skin and buccopharynx over a broad range 'of aquatic
habitats. ;

The idea that lunglessness represents a larval adaptation is not new. It was
Wilder and Dunn (1920, p. 64) who suggested that ‘‘the advantage of a lungless
condition in such a habitat is obvious, which may be demonstrated by observa-
tions upon the activities of various Plethodontidae in the streams in which they
lay their eggs and spend their larval and, to a less extent, their adult life’ (italics
added).

CONCLUSIONS

Plethodontids exhibit a unique suite of ecological, cytological, morphological,
and physiological characteristics that differentiate them from other small ecto-
thermic vertebrates. These include slow growth, lengthy life cycles, and long
generation times (Hairston 1987); large genomes (Hally et al. 1986; Sessions and
Larson 1987) that suggest low cell-division rates (Horner and Macgregor 1983);
lunglessness; and low metabolic rates (Whitford and Hutchison 1967; Feder 1983).

These characteristics probably represent an integrated set of traits that reflect
the original adaptation of plethodontids to streamside habitats in stable, humid
forest environments of upland regions of eastern North America. The basic life-
cycle pattern shown by the more primitive members of the family suggests that
lunglessness evolved as a rheotropic adaptation to promote larval survival in
flowing streams.

Until Ruben and Boucot’s (1989) criticism of Wilder and Dunn’s (1920) hypoth-
esis, it had been generally accepted that lunglessness in plethodontid salamanders
is the result of selection to reduce buoyancy in flowing mountain streams. As an
alternative hypothesis, Ruben and Boucot suggested that late Mesozoic Appala-
chia lacked the upland environments required for such selection and suggested
that plethodontids lost their lungs for reasons other than ballast.

We have cited evidence contradicting Ruben and Boucot’s suggestion. Late
Mesozoic Appalachia had hilly or mountainous terrain, and phylogenetic evi-
dence suggests that the ancestral plethodontids had a mode of life suited to moun-
tain streams as originally suggested by Wilder and Dunn. Moreover, it is uncertain
whether the plethodontids arose before, during, or after the Cretaceous.

We further submit that lunglessness arose as primarily a larval, not adult,
adaptation. Since larval plethodontids lack lungs and are otherwise morphologi-
cally adapted to life in streams, it seems reasonable to hypothesize that selection
against lungs occurred in just such an environment but in the larval stage as an
adaptation to reduce buoyancy in well-oxygenated stream environments where
cutaneous and branchial respiration could provide for the respiratory needs of
the animals. This argument is strengthened by the observation that the larval
period is prolonged in many living plethodontids. If we assume that lungless
plethodontid larvae are a sister taxon to lunged ambystomatid larvae, then the
loss of lungs in the former and their retention in the latter is consistent with the
basic habitat dichotomy between the two families.
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