BIOL 151 -- Introductory Zoology

Spring 2013, Minot State University

Laboratory #3: Population growth in two species systems: 

competition and predation

Population growth in a single species can be described using the Pearl-Verhulst growth equation, and many case studies indicate that using this model can help to understand population dynamics in species that are essentially occupying a habitat in isolation.  However, most of nature consists of multispecies assemblages.  The two most fundamental kinds of interspecies interactions are (1) interspecific competition and (2) predators and their prey.

In the last lab exercise, you were exposed to the factors that affect population growth in a single species, e.g., the reproductive rate, population size and the carrying capacity.  In this lab exercise, you will use several more spreadsheet models to explore how the population growth of a species is affected by another interacting species, e.g., a competitor species or a species that eats the species in question.

MATERIALS AND METHODS

Competition (or mutualism) model

Populations that may be interacting with another can grow according to this equation,

dN1
       
(K1 – N1 – N2)


         =  r1N1

 dt
            
K1

where N is population size, t is time, r is reproductive rate (how many offspring produced in a given time interval, e.g., babies per day) and K is the carrying capacity (the maximal number of individuals that the habitat can support indefinitely).  Notice how similar this is to last week’s Pearl-Verhulst growth equation.  However, there are subscripts indicating that there will be more than one species in question.  This equation is known as the Lotka-Volterra competition equation.  The way it differs from the Pearl-Verhulst equation is the new component, N2, which indicates how the numbers of a competing species and how that species uses the same resources.  The symbol  indicates that resource use overlap of species 2 on species 1.

For the computer model to work, it will need to pay attention to species 2 at the same time, i.e., solving differential equations simulateously.  This is difficult on paper with a pencil, but pretty easy for a spreadsheet on a computer.  So, our model will use another equation at the same time:

dN2
       
(K2 – N2 – N1)


         =  r2N2

 dt
            
K2

 and  are the Lotka-Volterra competition coefficients.  They indicate resource overlap.  If they both equal 0, then there is no competition between the species.  Try substituting 0 for  and  in the equations above and on the spreadsheet to confirm this for yourself.

1. Open the excel file titled “Lotka-Volterra model.”  It can be downloaded at my website.  Several variables can be manipulated: carrying capacity for each species, reproductive rate for each species, generation zero population size for each species, and the competition coefficients for each species.

2. Set “K = 100” for each species by typing 100 in the appropriate cell on the spreadsheet.  Set the population size in “generation zero” to 2.  Set the reproductive rate (r) to 1.  Set the competition coefficients to 1.  As with last week, pay attention to the shape of the resulting curve on the graph: (a) how steep it gets at its steepest, (b) where (and if) it flattens out, and (c) how fast (how many generations?) it took to flatten out.  Where does the curve flatten out: at carrying capacity, or somewhere below it?  Do the values make sense to you?  (Remember, that if the species have competition coefficients of 1, then the species are ecologically equivalent.) (Do not write answers to these questions.  Just talk about them with your lab partner.)
3. Vary the generation zero population size.  Experiment with as many values as you wish.  Because the results are instant, you are not limited in how many simulations you run.  Try many values.  Again, pay attention to the shape of the resulting curve on the graph: (a) how steep it gets at its steepest, (b) where (and if) it flattens out, and (c) how fast (how many generations?) it took to flatten out.  Again, do these values make sense to you? (Do not write answers to these questions.  Just talk about them with your lab partner.)
4. Reset the values to the original ones in step 2.  Now vary the carrying capacity value. Again, pay attention to the shape of the resulting curve on the graph: (a) how steep it gets at its steepest, (b) where (and if) it flattens out, and (c) how fast (how many generations?) it took to flatten out. (Do not write answers to these questions.  Just talk about them with your lab partner.)
5. Reset the values to the original ones in step 2.  Now vary the reproductive rate. Ask yourself (and your partner) the same sorts of questions. (Do not write answers to these questions.  Just talk about them with your lab partner.)
6. Given that the competition coefficients have been set to 1, nothing very interesting should have been happening.  Now begin by varying the competition coefficients in any way you wish to adequately test your hypothesis.  (If you begin to feel confident about how to use this model, try experimenting with competition coefficients that are negative.  What are the results of doing so and how might this be related to another interspecific interaction called mutualism?) (Do not write answers to these questions.  Just talk about them with your lab partner.)
NOW FOR THE STUFF TO RECORD ON YOUR RESULTS PAGE

Create a set of simulation variable values wherein the two species coexist, but at lower than their normal carrying capacities.  Draw these curves clearly on Fig. 1.  Now vary a single value that leads to extinction of one of the two species.  Draw these curves clearly.  Be sure to label each curve clearly so that a reader can understand the differences between the two simulations.

Next, establish values that result in stable coexistence of both species.  Now vary one, two or more variable to cause the situation to reverse, i.e., one in which the more numerous species in one simulation becomes less numerous in the second simulation.  Graph all four curves and label them clearly in Fig. 2.
Predation (predator-prey) model

The influence of predators on how their prey population numbers vary can be modeled in two basic ways, and you will investigate both.  To explore the interactions of predators and prey when the prey always grow exponentially, use the “Rosenzweig-MacArthur model 1.”  To investigate how predators interact with prey that grow sigmoidally, use the Rosenzweig-MacArthur model 2.”  In these models, there are slightly different variables to manipulate because prey do not use the predators resources (i.e., they don’t compete), and the prey are the predators resource.  So things are different and we use somewhat different variables, but the equations are pretty similar.


a’
killing efficiency of the predators


f
rate at which predators turn the prey into baby predators (this is similar to

a reproductive rate for the predators)


q
the is the starvation rate of the predators


r
this is the prey reproductive rate


N
prey population size


C
predator population size


K
carrying capacity of the prey

1. Use the values that are originally part of the spreadsheet.  Keep your investigations simple by manipulating one variable at a time.  We will also keep your investigations simple by manipulating only three variables.

2. Vary the predator efficiency, a’.  Do the populations cycle or attain flatline stability?  Do the populations go extinct?  Which goes extinct first? (Do not write answers to these questions.  Just talk about them with your lab partner.)
3. Vary the prey reproductive rate, r.  Ask yourself the same questions. (Do not write answers to these questions.  Just talk about them with your lab partner.)
4. Vary the carrying capacity of the prey in the Rosenzweig-MacArthur model 2 spreadsheet.  Ask yourself all the questions. (Do not write answers to these questions.  Just talk about them with your lab partner.)
NOW FOR THE STUFF TO RECORD ON YOUR RESULTS PAGE

Using either spreadsheet, create a set of simulation variable values wherein the predators and prey coexist, i.e., neither goes extinct.  Draw these curves clearly on Fig. 3.  Now vary a single value that leads to extinction of one or two of the two species.  Draw these curves clearly.  Be sure to label each curve clearly so that a reader can understand the differences between the two simulations.

Next, using either spreadsheet, establish values that result in stable coexistence of both species.  Draw the results on Fig. 4.  Now establish the same values in the other spreadsheet.  Draw these results in Fig. 4.  Be sure all graphs are clearly labeled so that a reader can understand what was being compared. 
RESULTS




Fig. 1. -- Results of two computer competition simulations wherein one parameter was varied causing extinction of one of the species.





Fig. 2. -- Results of two computer competition simulations wherein one/several  parameters was/were varied causing reversal of the dominant species.





Fig. 3. -- Results of two computer predation simulations wherein one parameter was varied causing extinction of both predators and prey.





Fig. 4. -- Results of two computer simulations wherein parameters were kept equal in the different models, i.e., comparing the two models.

DISCUSSION

In Fig. 1, one of the populations was driven extinct.  Explain what parameter you varied, and how this extinction might occur in real populations.

In Fig. 2, describe the differences between the two simulations.  What allows the situation to reverse (i.e., wherein species 2 dominates in one case, but not in the other)?

Do the predation simulations support or reject the hypothesis that predators with high killing efficiency produce stable predator-prey systems?

Do your data presented in Fig. 4 support the hypothesis that prey that grow only exponentially can be in better balance with predators than prey that grow can grow sigmoidally/logistically?
How do the predator-prey population size dynamics differ from interspecific competition and single-species population growth?  Can you explain why these differences exist?
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