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Abstract
Background: Very little is known about the immunological responses of amphibians to pathogens
that are causing global population declines. We used a custom microarray gene chip to characterize
gene expression responses of axolotls (Ambystoma mexicanum) to an emerging viral pathogen,
Ambystoma tigrinum virus (ATV).

Result: At 0, 24, 72, and 144 hours post-infection, spleen and lung samples were removed for
estimation of host mRNA abundance and viral load. A total of 158 up-regulated and 105 down-
regulated genes were identified across all time points using statistical and fold level criteria. The
presumptive functions of these genes suggest a robust innate immune and antiviral gene expression
response is initiated by A. mexicanum as early as 24 hours after ATV infection. At 24 hours, we
observed transcript abundance changes for genes that are associated with phagocytosis and
cytokine signaling, complement, and other general immune and defense responses. By 144 hours,
we observed gene expression changes indicating host-mediated cell death, inflammation, and
cytotoxicity.

Conclusion: Although A. mexicanum appears to mount a robust innate immune response, we did
not observe gene expression changes indicative of lymphocyte proliferation in the spleen, which is
associated with clearance of Frog 3 iridovirus in adult Xenopus. We speculate that ATV may be
especially lethal to A. mexicanum and related tiger salamanders because they lack proliferative
lymphocyte responses that are needed to clear highly virulent iridoviruses. Genes identified from
this study provide important new resources to investigate ATV disease pathology and host-
pathogen dynamics in natural populations.

Background
Emerging infectious diseases (EIDs) pose a serious threat
to the health, stability, and persistence of human and
wildlife populations [1-4]. Genetic and genomic tools

have been incredibly useful for discovery of genes associ-
ated with host response and variation in resistance or sus-
ceptibility to a variety of pathogens [5-7]. The advent of
genomic tools such as microarray analysis has offered new
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insights into host-pathogen systems. Additionally, their
application to genomic response to host disease response
allows rapid characterization of candidate genes for fur-
ther research into control and eradication methods.

EIDs are a leading hypothesis for the global decline of
amphibians and two pathogens in particular, Batra-
chochytrium dendrobatidis and Ranaviruses have been
implicated in worldwide epizootics. Although studies are
beginning to investigate possible mechanisms of resist-
ance to these pathogens [8], in general, very little is known
about the immune response of amphibians to EIDs. This
is because most natural amphibian species are not used as
laboratory models and we lack fundamental molecular
tools to investigate disease pathology and host-pathogen
interactions at the molecular level for all but a few species
(e.g., Ambystoma tigrinum spp., Xenopus spp.).

Over the last 15 years, Ranavirus infections have been
associated with marked increases in morbidity and mor-
tality in fish, reptiles, and amphibians [9]. Ranaviruses are
globally-distributed double-stranded, methylated DNA
viruses of fish, amphibians and reptiles and are impli-
cated in amphibian epizootics worldwide [9-11]. Both
encapsulated and non-encapsulated forms can be infec-
tious. The virus enters the cell via receptor mediated endo-
cytosis or via fusion with the plasma membrane; and
DNA and RNA synthesis occur in the nucleus, while pro-
tein synthesis occurs at morphologically specific assembly
sites in the cytoplasm [9]. In North America, ranaviruses
have been isolated from the majority of recent docu-
mented amphibian epizootics [12], including from tiger
salamander (Ambystoma tigrinum) epizootics in Sas-
katchewan, Canada [13], Arizona [14], North Dakota,
Utah, and Colorado, USA [15,16]. The viral variant that
infects tiger salamanders, ATV, is transmitted either via
direct contact with an infected animal or immersion in
water that contains virus and infected individuals exhibit
systemic hemorrhaging, edema, ulceration, and necrosis
of the integument and internal organs [13,17,18]. In cases
where ATV infection leads to mortality, it usually occurs
within 2–3 weeks of exposure, with animals displaying
symptoms often between 8–10 days post-exposure. Thus,
ATV can rapidly overwhelm the tiger salamander immune
response. However, mortality is not always a pathological
endpoint because virulence and resistance are known to
vary among ATV strains and tiger salamander popula-
tions, respectively, as indicated by both laboratory exper-
iments and field observations [19]. Research
characterizing the tiger salamander genomic response to
ATV is needed to better understand the pathology, viru-
lence, and possible mechanisms of resistance to this
emerging disease.

The tiger salamander species complex includes A. mexica-
num (Mexican axolotl), a model organism with a growing
genomic and informatics resource base [20]. The immune
system of the Mexican axolotl has been extensively stud-
ied using several classical approaches. Relative to other
vertebrate models, the axolotl immune response has been
described as immunodeficient [21,22]. There are several
reasons for this characterization, including: production of
only two immunoglobulin (Ig) classes, only one of which
regulates the humoral response and neither of which is
anamnestic [23,24]; no response to soluble antigens [25];
poor mixed lymphocyte reactions [26,27]; and lack of cel-
lular cooperation during the humoral immune response
as indicated by enhanced humoral immunity following
thymectomy or X-ray irradiation [28,29]. Weak immune
responses are known for salamanders in general, and the
Mexican axolotl and related tiger salamanders are espe-
cially susceptible to ATV infections with high observed
mortality rates both in the laboratory and in the field.
Indeed, an outbreak of ATV in 2003 at the Indiana Axolotl
Colony significantly reduced adult stocks before the virus
was contained. By way of comparison, adult Xenopus effec-
tively clear close-related FV3 Ranavirus with an immune
response that includes an early T-cell proliferative phase
in the spleen [30].

To further investigate the axolotl immune response to
ATV, we used an Affymetrix custom microarray to identify
genes that were significantly, differentially expressed in
the spleen. We then compared these genes to a list of
genes associated with regeneration that were previously
identified from A. mexicanum using the same microarray
platform. We reasoned that such a comparison would
allow us to filter gene expression responses of humoral
cells induced generally in response to injury and stress
from those expressed specifically in response to ATV infec-
tion. Also, this comparison would potentially identify
gene expression signatures associated with cell prolifera-
tion in response to ATV, as we have previously identified
many cell proliferation probe sets on the Ambystoma gene-
chip that are differentially regulated during spinal cord
regeneration [31]. The genes that we describe provide
mechanistic insights and new tools to investigate sala-
mander antiviral responses in the laboratory and in natu-
ral populations.

Methods
Animal care and surgery protocols
Inbred A. mexicanum eggs from a single full-sib mating
were obtained from the Ambystoma Genetic Stock Center
at the University of Kentucky. Each A. mexicanum egg and
larva was reared in an individual container in aquifer
water treated with ReptiSafe and changed weekly. Individ-
uals were fed brine shrimp ad libitum for the first four
weeks post-hatching and blackworms (Tubifex) ad libitum
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thereafter. Animals were reared in an environmental
chamber on a 12:12 h light:dark cycle at 20°C. At 4.5
months of age, 12 individuals were injected with 100 !l of
106 p.f.u./ml of ATV isolated from the axolotl colony and
suspended in cell culture medium. This amount of virus
was determined to be the minimum lethal dose via injec-
tion in previous unpublished experiments (Storfer,
unpublished data) and the strain utilized in the experi-
ment was extracted from axolotls that had previously been
infected and killed by the virus. Simultaneously, four
uninfected (control) individuals were sacrificed in MS222
for spleen and lung removal. Spleens from all animals
were flash frozen in liquid nitrogen. The same surgical
procedure was performed on four infected individuals fol-
lowing 24, 72 and 144 hours of infection. Spleen tissue
was utilized due to its previously noted importance in
CD8+ T cell immune responses to Ranaviruses, particu-
larly FV3, in frogs [30] Additionally, spleen is an impor-
tant immune organ as antigens from the blood are
processed in the spleen. Lung tissue was removed for viral
quantification as it is an internal organ that can be utilized
in early stage virus quantification (Stewart, unpublished
data).

During the infection period behavioral observations were
taken opportunistically. Total RNA was extracted from
spleen with TRIzol (Invitrogen) according to the manufac-
turer's protocol. RNA isolations were further purified
using RNeasy mini columns (Qiagen). The amount of
RNA present in each isolate was determined via UV spec-
trophotometry, and RNA quality was inspected via a 2100
Agilent Bioanalyzer. Sixteen high quality isolates (four
replicates at each of four sampling times: 0 (controls), 24,
72, and 144 hours post-infection) were used to make indi-
vidual-specific pools of biotin labeled cRNA probes. Each
of the 16 pools was then independently hybridized to an
Amby_001 custom Affymetrix GeneChip (for a more
detailed description of the microarray platform see [31]
and [32]). The University of Kentucky Microarray Core
Facility generated cRNA probes and performed hybridiza-
tions according to standard Affymetrix protocols.

Quality Control and Data Processing
All quality control and processing analyses were done in R
[33]http://www.r-project.org. We used the Bioconductor
package "affy" http://www.bioconductor.org to perform
several quality control analyses at the individual probe
level [34,35]. These analyses included: (1) viewing images
of the log(intensity) values of the probes on each Gene-
Chip to check for spatial artifacts, (2) investigating meas-
ures of central tendency and dispersion by viewing box-
plots and histograms of all the GeneChips, (3) viewing
pair-wise M versus A plot matrices for replicate Gene-
Chips, and (4) viewing an RNA degradation plot [35] that
enables the visualization of the 3' labeling bias associated

with all GeneChips simultaneously. Upon conducting
these probe level analyses, we background corrected, nor-
malized, and summarized all sixteen GeneChips using the
Robust Multi-array Average (RMA) algorithm [36]. Fol-
lowing this, we calculated correlation matrices for repli-
cate GeneChips (four correlation matrices with four
GeneChips per matrix; all r from replicate GeneChips >
0.980) on the summarized probe-set level data. The
strong correlations observed between replicate GeneChips
suggests that we were able to obtain a high degree of
repeatability within treatments.

Data Filtering
Microarrays may not accurately quantify the abundance of
lowly expressed genes [37]. Calculating statistical tests for
such genes adds to the multiple testing burden that is
inherent to microarray studies. To address this issue, we
filtered genes whose mean intensity across all 16 Gene-
Chips was greater than the mean of the lowest quartiles
(25th percentiles) across all GeneChips (n = 16, mean =
5.83, SD = 0.06; data presented on a log2 scale). Upon
imposing this filtering criterion, 3619 probe-sets were
available for significance testing.

Identifying Differentially Expressed Genes
We used the Bioconductor package LIMMA [38,39] to
generate moderated t-statistics for all six of the possible
pair-wise contrasts of the four sampling times investigated
in our study. LIMMA employs an empirical Bayes method-
ology that effectively shrinks the sample variances
towards a pooled estimate. This approach reduces the
likelihood of obtaining large test statistics due to underes-
timation of the sample variances. The moderated t-statis-
tics generated by LIMMA test the null hypothesis that the
difference between the two groups being compared is zero
(i.e., group 1 – group 2 = 0). LIMMA also generates mod-
erated F-statistics that test the null hypothesis that none of
the contrasts within a family of contrasts are statistically
significant. We corrected for multiple testing by applying
the step-up algorithm [40] to the P-values of the moder-
ated F-statistics associated with our six contrasts. Upon
correcting for multiple testing, we identified 2322 genes
(probe-sets) that were statistically significant. To prioritize
amongst differentially expressed genes, we focused on
probe-sets that exhibited two-fold or greater changes at
any time-point relative to controls. Any gene that was
non-significantly down-regulated but significantly up-reg-
ulated at one or more time points was considered up-reg-
ulated, and vice versa for classification of up- versus
down-regulation. We also required that these probe sets
have moderated F-statistics greater than or equal to the
50th percentile of the 2322 F-statistics from the statistically
significant probe-sets (F " 12.68). We further limited our
analysis to only those probe sets that exhibited significant
sequence identity with a human reference sequence. We
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note that 263 probe-sets with no functional annotation
were statistically significant, differentially expressed by "
two-fold, and had F-values " 12.68.

Clustering
Hybridization intensities were averaged within treatment
groups (0, 24, 72, and 144 hrs post-infection) and log2
ratios were calculated for each non-zero sampling time
relative to 0 hours post-infection. Genesis v. 1.6.0 [41,42]
was used cluster these log2 ratio data and to generate heat
maps. Clustering was conducted using a Self Organizing
Map (SOM) algorithm. Default conditions were used with
the exception that the SOM was allowed to run for
263,000 iterations. The dimensions of the final SOM are
2x *1y. These dimensions were determined by comparing
output from several different combinations.

Enrichment Analyses
Functional annotation of genes by gene ontology was per-
formed using the Database for Annotation, Visualization
and Integrated Discovery (DAVID, [43]). Functional
annotation clustering was performed using the default set-
tings with the exception of using the highest classification
stringency.

Quantitative real-time PCR
We used quantitative real-time PCR (qPCR) to confirm
the results of the microarrays. We estimated a fold change
for 24 and 72 hr time points using the ##ct method of rel-
ative quantification [44], utilizing ribosomal protein L 19
as an endogenous control gene. The same total RNA that
was used for microarray analysis was used to create cDNA
for qPCR using the BioRad iScript cDNA synthesis kit, fol-
lowing manufacturer instruction. Primers for the qPCR
were designed using Primer Express 2.0 (Applied Biosys-
tems). Primers were designed to encompass the sequence
of GeneChip probe sets (Additional file 1). qPCR was
accomplished using SYBR Green chemistry.

To verify that exposed animals were infected and to quan-
tify viral load and replication over time, we performed
qPCR on lung tissue with TaqMan chemistry following
the protocol detailed in [45]. ANOVA with a Tukey's HSD
correction for all pairwise comparisons was performed to
determine if viral loads were significantly different across
time points.

Results
Viral load and disease pathogenesis
Viral load for each animal was estimated using qPCR and
then averaged for each time point (Fig 1). The significant
increase in viral load across time points indicates that ani-
mals were infected and that viral replication was occur-
ring. ANOVA with a Tukey's correction for multiple
comparisons confirmed that viral load increased linearly

between 24, 72, and 144 hours post-infection, and all
time points were significantly different from all other time
points (F3,44 = 242.56; p $ 0.01).

No animals displayed any gross symptoms of ATV infec-
tion in terms of hemorrhaging, lesions or edema, either
externally or on any internal organs upon euthanasia and
subsequent surgery. Similarly, there were no notable
changes in behavior observed during the period of infec-
tion. This is likely due to the relatively short infection
period utilized in this experiment. As noted in the intro-
duction, infected animals often take 8–10 days, or more,
to become symptomatic upon infection.

Gene clustering and functional annotation
We identified 263 probe sets with statistically significant
differences in mRNA abundances between Day 0 and any
other subsequent time point (Tables 1, 2). We assume that
statistically significant probe sets correspond to genes that
were differentially regulated after ATV infection. Cluster
analysis of the statistically significant genes identified two
groups that exhibited similar changes in mRNA abun-
dance. After ATV infection at Day 0, 158 putative genes
showed a significant increase in mRNA abundance at sub-
sequent time points (Figure 2), while 105 transcripts
showed a significant decrease (Figure 3). Thus, more
genes were up-regulated than down-regulated in response
to ATV infection. Overall, DAVID categorized statistically
significant genes among 44 different groups that corre-
spond to different biological processes. Eight of these
groups contained more genes than would be expected by
chance sampling of genes from the microarray (geometric
mean p-value < 0.05); these groups were considered sig-
nificantly enriched with candidate genes relative to other
groups (Table 3). Four of these significant groups contain
gene ontologies related to immune response and patho-
gen response, including innate immunity, complement
activation, lysosome function, and antigen processing and
presentation. The most enriched functional group con-
tains genes primarily related to immune function and
defense responses. The remaining four functional groups
contain gene ontologies related to ion binding, ion trans-
port, vitamin metabolism, and response to an unfolded
protein. Many genes that were classified in broader bio-
logical process categories that are not directly immunity-
related are nonetheless associated with immunity in verte-
brates [e.g. [46-48]].

Genes Up-regulated in Response to ATV
Across all time points, the majority of up-regulated genes
were related to immune response or other related func-
tions, such as inflammation and apoptosis. Other up-reg-
ulated genes pertained to gene functions such as ion
binding and transport, membrane related functions, and
protein binding and modification. Twenty-three genes
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(represented by 26 probe sets) demonstrated 2-fold or
greater changes at 24 hours post-infection, all of which
were up-regulated. Ten of these 23 have functions pertain-
ing to immune response. Of the remaining highly
expressed genes, one was associated with inflammation,
two to regulation of apoptosis, three to ion binding, three
to protein binding and modification, one to transport,
one to the extracellular constituent, and one to membrane
and glycolipids. Many of these genes showed increasing
transcript abundances over time. At 72 hours post infec-
tion, 43 genes had a greater than 5-fold change, and 40
genes had a greater than 5-fold change at 144 hours. The
highest expression level, 91-fold increase at 144 hours,
was observed for interferon-induced protein with tetracopep-
tide repeats 5 (IFIT5).

Genes Down-regulated in Response to ATV
In contrast to the very high fold changes observed among
up-regulated genes, the largest fold change observed
among down-regulated genes was approximately 4.9-fold,
in chondroitin sulfate proteoglycan (NCAN). Five down-reg-
ulated genes each code for regulation of transcription and
translation. An additional 15 down-regulated genes corre-
spond to 20 probe sets that have functions associated with

cell division and mitosis, which was not observed in the
up-regulated genes. Other notable down-regulated gene
ontologies include one gene corresponding to pinocytosis
and endocytosis, and one gene related to natural killer cell
mediated cytotoxicity.

Validation of Microarray Results Using Quantitative Real-
time PCR
We used qPCR to estimate fold changes for nine genes to
verify our microarray data (Table 4). For five of the nine
genes investigated (56%; Myxovirus resistance 1, Macro-
phage receptor with collagenous structure, Complement compo-
nent 3, Cyclin dependant kinase inhibitor 1B, Vaccinia related
kinase 1) there is good agreement between the microarray
and qPCR data. In genes where the microarray estimates
of fold change were modest (Serine dehydratase like, Hemo-
globin gamma alpha, Glycogen synthase kinase, Programmed
cell death 8) there is poorer agreement between fold
change estimates from these two technologies. However,
for this latter group of genes with modest fold change val-
ues, the microarray and qPCR data were always within
four fold of each other. These results demonstrate that we
were able to verify robust differences that were suggested
by the microarray data.

Log values of viral particles quantified with quantitative real-time PCR across all time pointsFigure 1
Log values of viral particles quantified with quantitative real-time PCR across all time points.
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Table 2: Genes which were significantly down-regulated at any time point. Numbers indicate fold change at that time point.

ID NAME 24 hr 72 hr 144 hr

transcription
SRV_04230_at CHROMOSOME X OPEN READING FRAME 15 0.73 0.44 0.50

SRV_01344_a_at INTERFERON REGULATORY FACTOR 2 1.02 0.47 0.50
SRV_01768_a_at TAF9 RNA POLYMERASE II, TATA BOX BINDING PROTEIN (TBP)-

ASSOCIATED FACTOR, 32 KDA
0.84 0.44 0.50

SRV_03843_a_at MEDIATOR OF RNA POLYMERASE II TRANSCRIPTION, SUBUNIT 31 
HOMOLOG (YEAST)

0.95 0.50 0.45

SRV_01892_at ZINC FINGER PROTEIN 282 0.98 0.39 0.42

translation
SRV_03800_a_at MITOCHONDRIAL RIBOSOMAL PROTEIN S7 1.13 0.50 0.54
SRV_03598_at MITOCHONDRIAL RIBOSOMAL PROTEIN L19 0.73 0.49 0.53
SRV_04607_at PEPTIDE DEFORMYLASE-LIKE PROTEIN 1.01 0.46 0.50

SRV_04925_a_at HYPOTHETICAL PROTEIN MGC11102 1.01 0.43 0.48
SRV_01958_at EUKARYOTIC TRANSLATION INITIATION FACTOR 4E BINDING 

PROTEIN 3
1.05 0.32 0.31

Natural Killer cell mediated cytotoxicity
AE_at TUBULIN, BETA 2C 0.88 0.52 0.49

Apoptosis
SRV_11815_at CASP2 AND RIPK1 DOMAIN CONTAINING ADAPTOR WITH DEATH 

DOMAIN
0.70 0.45 0.52

SRV_01489_at PRKC, APOPTOSIS, WT1, REGULATOR 0.88 0.43 0.44

ion binding/transport
SRV_03020_at TRAF-TYPE ZINC FINGER DOMAIN CONTAINING 1 0.85 0.49 0.53
SRV_01742_at SPECTRIN, ALPHA, NON-ERYTHROCYTIC 1 (ALPHA-FODRIN) 0.82 0.46 0.52

SRV_02131_a_at PEPTIDASE (MITOCHONDRIAL PROCESSING) BETA 0.80 0.48 0.51
SRV_02733_at MITOCHONDRIAL INTERMEDIATE PEPTIDASE 0.59 0.39 0.40
SRV_04112_at HYPOTHETICAL PROTEIN FLJ20699 0.93 0.42 0.39

SRV_00559_a_at PRIMASE, POLYPEPTIDE 1, 49 KDA 0.79 0.42 0.39
SRV_03126_at RING FINGER PROTEIN 113A 0.95 0.39 0.39
SRV_03759_at ATP SYNTHASE, H+ TRANSPORTING, MITOCHONDRIAL F0 COMPLEX, 

SUBUNIT S (FACTOR B)
0.91 0.30 0.25

SRV_01177_a_at ECTONUCLEOSIDE TRIPHOSPHATE DIPHOSPHOHYDROLASE 1 1.19 0.52 0.49
SRV_04638_a_at MEMBRANE-ASSOCIATED RING FINGER (C3HC4) 7 0.78 0.44 0.47
SRV_03403_at MAKORIN, RING FINGER PROTEIN, 1 1.02 0.55 0.48
SRV_02137_at GUANINE DEAMINASE 0.93 0.36 0.36
SRV_12156_at TUMOR PROTEIN D52 0.93 0.58 0.45
SRV_02173_at CHONDROITIN SULFATE PROTEOGLYCAN 3 (NEUROCAN) 1.38 0.57 0.20

metabolic process
SRV_02346_a_at GLUTATHIONE S-TRANSFERASE OMEGA 1 1.04 0.54 0.47
SRV_04215_at PHOSPHOGLUCOMUTASE 2 1.08 0.57 0.46
SRV_04397_at NITRILASE FAMILY, MEMBER 2 0.86 0.49 0.46
SRV_03369_at NON-METASTATIC CELLS 7, PROTEIN EXPRESSED IN 

(NUCLEOSIDE-DIPHOSPHATE KINASE)
1.00 0.55 0.43

SRV_00123_at AMINOLEVULINATE, DELTA-, DEHYDRATASE 0.71 0.49 0.31
SRV_00160_s_at FUMARYLACETOACETATE HYDROLASE (FUMARYLACETOACETASE) 0.83 0.61 0.49
SRV_00135_at ASPARTOACYLASE (CANAVAN DISEASE) 0.92 0.30 0.22
SRV_01499_at 6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BIPHOSPHATASE 1 0.88 0.65 0.47
SRV_11745_at ACYL-COENZYME A OXIDASE 3, PRISTANOYL 0.87 0.51 0.47
SRV_03094_at LIPOIC ACID SYNTHETASE 0.83 0.47 0.47

SRV_05217_a_at SERINE DEHYDRATASE-LIKE 1.03 0.52 0.33

transport
SRV_03906_at HEMATOPOIETIC STEM/PROGENITOR CELLS 176 0.81 0.49 0.58

SRV_04743_a_at HYPOTHETICAL PROTEIN FLJ22028 0.98 0.54 0.50
SRV_02065_a_at ADAPTOR-RELATED PROTEIN COMPLEX 2, MU 1 SUBUNIT 0.90 0.59 0.48
SRV_03218_a_at GABA(A) RECEPTOR-ASSOCIATED PROTEIN-LIKE 2 0.93 0.28 0.37
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SRV_05300_a_at SFT2 DOMAIN CONTAINING 2 0.91 0.31 0.29
SRV_05537_a_at TRAFFICKING PROTEIN PARTICLE COMPLEX 6B 0.95 0.49 0.34
SRV_02033_a_at SELENIUM BINDING PROTEIN 1 1.05 0.58 0.45

protein binding/modification
SRV_04235_at hypothetical protein FLJ11280 0.68 0.44 0.56

SRV_02678_a_at M-PHASE PHOSPHOPROTEIN 6 0.84 0.45 0.51
SRV_02198_a_at GLUTAMYL-PROLYL-TRNA SYNTHETASE 0.94 0.52 0.48
SRV_01481_at PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN 1 1.05 0.56 0.49
SRV_01495_at PYRUVATE DEHYDROGENASE KINASE, ISOZYME 2 1.04 0.41 0.31

SRV_04077_a_at UBIQUITIN-CONJUGATING ENZYME E2R 2 0.78 0.51 0.47
SRV_04977_s_at CNDP DIPEPTIDASE 2 (METALLOPEPTIDASE M20 FAMILY) 1.27 0.49 0.22
SRV_04977_at CNDP DIPEPTIDASE 2 (METALLOPEPTIDASE M20 FAMILY) 1.20 0.46 0.22
SRV_01825_at UBIQUITIN-CONJUGATING ENZYME E2B (RAD6 HOMOLOG) 0.90 0.47 0.51

RNA binding/processing
SRV_03823_at RNA BINDING MOTIF PROTEIN, X-LINKED 2 0.80 0.47 0.54
SRV_03721_at SYF2 HOMOLOG, RNA SPLICING FACTOR (S. CEREVISIAE) 0.96 0.46 0.49
SRV_03417_at MITOCHONDRIAL RIBOSOMAL PROTEIN S28 0.86 0.51 0.47
SRV_03836_at EXOSOME COMPONENT 1 1.03 0.46 0.46

cell cycle/cell division
SRV_05218_a_at COILED-COIL DOMAIN CONTAINING 5 (SPINDLE ASSOCIATED) 0.68 0.36 0.46
SRV_03244_a_at FREQUENTLY REARRANGED IN ADVANCED T-CELL LYMPHOMAS 2 0.89 0.38 0.46
SRV_05024_at ZW10 INTERACTOR 0.96 0.41 0.44
SRV_00804_at CDC6 CELL DIVISION CYCLE 6 HOMOLOG (S. CEREVISIAE) 0.70 0.50 0.42
SRV_03256_at TPX2, MICROTUBULE-ASSOCIATED, HOMOLOG (XENOPUS LAEVIS) 0.91 0.41 0.51
SRV_04156_at CELL DIVISION CYCLE ASSOCIATED 8 0.71 0.43 0.50
SRV_03593_at DISCS, LARGE HOMOLOG 7 (DROSOPHILA) 0.66 0.39 0.49
SRV_14350_at NIMA (NEVER IN MITOSIS GENE A)-RELATED KINASE 3 0.96 0.42 0.30
SRV_02556_at SMC4 STRUCTURAL MAINTENANCE OF CHROMOSOMES 4-LIKE 1 

(YEAST)
0.69 0.43 0.47

SRV_03257_at TPX2, MICROTUBULE-ASSOCIATED, HOMOLOG (XENOPUS LAEVIS) 0.79 0.35 0.45
SRV_02235_at KINESIN FAMILY MEMBER 11 0.53 0.31 0.44
SRV_01290_at FERRITIN, HEAVY POLYPEPTIDE 1 1.00 0.54 0.42

SRV_02151_a_at CENTRIN, EF-HAND PROTEIN, 2 0.65 0.39 0.39
SRV_04253_a_at NUCLEOLAR AND SPINDLE ASSOCIATED PROTEIN 1 0.62 0.28 0.37
SRV_05141_at CYCLIN-DEPENDENT KINASE INHIBITOR 2C (P18, INHIBITS CDK4) 0.85 0.57 0.37

SRV_00033_copy4_at T-cell acute lymphocytic leukemia 1 1.02 0.47 0.36
SRV_00033_at T-cell acute lymphocytic leukemia 1 0.97 0.44 0.35

SRV_00033_copy2_at T-cell acute lymphocytic leukemia 1 0.96 0.46 0.34
SRV_00033_copy1_at T-cell acute lymphocytic leukemia 1 0.96 0.44 0.33
SRV_00033_copy3_at T-cell acute lymphocytic leukemia 1 0.94 0.44 0.33

membrane
SRV_04260_at CHROMOSOME 9 OPEN READING FRAME 46 1.05 0.56 0.47
SRV_04763_at CHROMOSOME 10 OPEN READING FRAME 57 1.24 0.46 0.42

SRV_04650_a_at TRANSMEMBRANE 6 SUPERFAMILY MEMBER 1 1.00 0.47 0.32
SRV_05571_a_at OXIDATION RESISTANCE 1 0.77 0.37 0.42
SRV_03611_a_at TRANSLOCASE OF OUTER MITOCHONDRIAL MEMBRANE 70 

HOMOLOG A (YEAST)
0.97 0.55 0.48

kinase activity
SRV_05333_at RIO kinase 3 (yeast) 1.06 0.47 0.52

SRV_05450_a_at INTEGRIN BETA 1 BINDING PROTEIN 3 0.87 0.53 0.46
SRV_01863_at VACCINIA RELATED KINASE 1 0.61 0.39 0.51

pinocytosis/endocytosis
SRV_00866_at DISABLED HOMOLOG 2, MITOGEN-RESPONSIVE PHOSPHOPROTEIN 

(DROSOPHILA)
0.84 0.49 0.43

Table 2: Genes which were significantly down-regulated at any time point. Numbers indicate fold change at that time point. (Continued)
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DNA damage
SRV_04199_at NEI ENDONUCLEASE VIII-LIKE 3 (E. COLI) 0.75 0.41 0.37
SRV_02222_at HUS1 CHECKPOINT HOMOLOG (S. POMBE) 0.72 0.45 0.57

muscle development/contraction
SRV_01033_a_at INTERFERON-RELATED DEVELOPMENTAL REGULATOR 1 1.18 0.38 0.53
SRV_05143_a_at MYOSIN, LIGHT POLYPEPTIDE 1, ALKALI; SKELETAL, FAST 0.79 0.50 0.49
SRV_00058_s_at tropomyosin 0.89 0.53 0.48

other
SRV_01932_a_at FICOLIN 

(COLLAGEN/FIBRINOGEN DOMAIN CONTAINING) 3 (HAKATA 
ANTIGEN)

1.03 0.58 0.46

SRV_05356_s_at FAMILY WITH SEQUENCE SIMILARITY 58, MEMBER A 0.89 0.46 0.47
SRV_02972_at GLUTAREDOXIN 5 HOMOLOG (S. CEREVISIAE) 0.97 0.49 0.49
SRV_05356_at FAMILY WITH SEQUENCE SIMILARITY 58, MEMBER A 1.09 0.58 0.58
SRV_05263_at SOLUTE CARRIER FAMILY 39 (ZINC TRANSPORTER), MEMBER 3 0.73 0.45 0.51

SRV_04739_a_at ZINC FINGER PROTEIN 403 0.97 0.49 0.51
SRV_03830_at SHWACHMAN-BODIAN-DIAMOND SYNDROME 0.94 0.47 0.46
SRV_03448_at COILED-COIL DOMAIN CONTAINING 59 0.89 0.42 0.44

SRV_02223_a_at ISOPENTENYL-DIPHOSPHATE DELTA ISOMERASE 1 0.89 0.37 0.43
SRV_04160_at SDA1 DOMAIN CONTAINING 1 0.88 0.48 0.42
SRV_05216_at SERUM AMYLOID A-LIKE 1 0.82 0.42 0.42

SRV_04991_a_at MYC INDUCED NUCLEAR ANTIGEN 0.90 0.41 0.39
SRV_00134_a_at ARGININOSUCCINATE LYASE 1.10 0.44 0.36
SRV_05376_at WILLIAMS BEUREN SYNDROME CHROMOSOME REGION 27 0.84 0.36 0.31

Table 2: Genes which were significantly down-regulated at any time point. Numbers indicate fold change at that time point. (Continued)

Table 3: Significant (p $ 0.05 geometric mean p-value) functional groups obtained from functional annotation using DAVID.

Ontology Number of Genes p-value Ontology Number of Genes p-value

Functional Group 1 response to biotic 
stimulus

25 <0.001 Functional Group 5 water-soluble 
vitamin metabolism

4 0.02

<0.001 immune response 21 <0.001 0.033 vitamin metabolism 4 0.03
defense response 22 <0.001 pyridine nucleotide 

metabolism
3 0.07

Functional Group 2 cation binding 34 0.001 Functional Group 6 di-, tri-valent 
inorganic cation 

transport

5 0.006

0.002 ion binding 36 0.004 0.042 metal ion transport 5 0.06
metal ion binding 36 0.004 cation transport 6 0.22

Functional Group 3 innate immunity 4 0.001 Functional Group 7 bcr protein 3 0.02
0.005 immune response 5 0.004 0.045 molecular 

chaperone
4 0.02

innate immune 
response

4 0.007 Heat shock protein 
Hsp70

3 0.03

complement 
activation

3 0.02 Heat shock protein 
70

3 0.03

antigen processing 
and presentation

4 0.09

cell surface 3 0.20

Functional Group 4 lysosome 7 0.002
0.008 lysosome 7 0.009 Functional Group 8 response to 

unfolded protein
5 0.02

lytic vacuole 7 0.009 0.048 response to protein 
stimulus

5 0.02

vacuole 7 0.02 chaperone 6 0.26
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Expression profiles for cluster 1Figure 2
Expression profiles for cluster 1. Each row represents an individual gene, and each column a post-infection time point. Red 
coloration indicates increased expression of a gene relative to uninfected animals, and green indicates decreased expression. 
Genes (Cluster 1, n = 158) identified to be significantly up-regulated in response to ATV infection.
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Expression profiles for cluster 2Figure 3
Expression profiles for cluster 2. Each row represents an individual gene, and each column a post-infection time point. Red 
coloration indicates increased expression of a gene relative to uninfected animals, and green indicates decreased expression. 
Genes (Cluster 2, n = 105) identified to be significantly down-regulated in response to ATV infection.
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Analyses to identify proliferation gene expression 
signatures
Comparison of gene expression after ATV and tail ampu-
tation identified 25 genes that are significantly up-regu-
lated in both experimental frameworks (Table 5). No
significantly down-regulated genes were identified in

common. Several of the commonly up-regulated genes
appear to be related to humoral immunity, and mem-
brane and extracellular matrix related functions. Addi-
tionally, general stress response genes such as heat shock
70 kDa protein 5 were similarly regulated. None of the cell
cycle genes that are significantly up-regulated during tail

Table 4: Fold changes obtained from microarray and from quantitative real-time PCR.

Gene name Microarray qPCR

24 72 24 72

Myxovirus resistance 1 MX1 3.13 29.23 5.97 24.44
Macrophage receptor with collagenous structure MARCO 2.17 8.20 3.36 15.24

Complement component 3 C3 1.80 9.79 2.14 14.78
Cyclin dependant kinase inhibitor 1B CDKN1B -1.17 -1.74 -2.26 -3.16

Vaccinia related kinase 1 VRK1 -1.64 -2.58 -1.23 -1.88
Serine dehydratase like SDSL 1.03 -1.92 -1.35 -1.01

Hemoglobin gamma alpha HBG1 -1.01 -1.02 -1.54 -1.87
Glycogen synthase kinase GSK3A -1.07 -1.08 -1.13 2.76
Programmed cell death 8 PDCD8 1.13 -1.10 1.30 1.85

Table 5: Genes expressed in both ATV infection and spinal cord injury

Gene ID Gene Name Gene Ontology

SRV_00294_s_at protective protein for beta-galactosidase (galactosialidosis) proteolysis, protein transport
SRV_00309_at transglutaminase 1 

(K polypeptide epidermal type I, protein-glutamine-gamma-
glutamyltransferase)

membrane, cell envelope, protein modification

SRV_00327_a_at cathepsin K (pycnodysostosis) proteolysis
SRV_00330_at cytochrome b-245, beta polypeptide (chronic granulomatous disease) humoral response, inflammatory response
SRV_00371_a_at fructose-1,6-bisphosphatase 1 metal ion binding (zinc)
SRV_00442_at solute carrier family 11 (proton-coupled divalent metal ion 

transporters), member 1
immune response, ion transport

SRV_00713_a_at transcobalamin I (vitamin B12 binding protein, R binder family) ion transport/binding (cobalt)
SRV_00744_a_at adipose differentiation-related protein fatty acid transport, extracellular region
SRV_01179_a_at CD63 antigen (melanoma 1 antigen) endosome, membrane
SRV_01342_at interferon regulatory factor 1 immune response, transcription
SRV_01351_at jun B proto-oncogene transcription
SRV_01818_at thioredoxin signal transduction
SRV_02399_a_at matrix metalloproteinase 9 

(gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase)
extracellular matrix, apoptosis, proteolysis

SRV_02456_at gastric intrinsic factor (vitamin B synthesis) ion transport/binding (cobalt)
SRV_02516_at heat shock 70 kDa protein 5 (glucose-regulated protein, 78 kDa) anti-apoptosis, endoplasmic reticulum
SRV_02586_at lectin, galactoside-binding, soluble, 3 binding protein cell adhesion, cellular defense response, signal 

transduction
SRV_03054_at macrophage receptor with collagenous structure signal transduction
SRV_04604_at interferon induced with helicase c domain 1 innate immune response, regulation of apoptosis, 

response to virus
SRV_04819_a_at transmembrane protein 49 membrane, endoplasmic reticulum
SRV_04888_a_at UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 membrane, CNS development
SRV_04911_at thioredoxin domain containing 2 (spermatozoa) cell redox homeostasis
SRV_04964_a_at tubulin beta MGC4083 nucleotide binding, protein polymerization
SRV_07726_a_at macrophage expressed gene 1 none
SRV_11417_a_at matrix metalloproteinase 1 (interstitial collagenase) proteolysis, ion binding (zinc)
SRV_11663_a_at tissue inhibitor of metalloproteinase 1 

(erythroid potentiating activity, collagenase inhibitor)
enzyme inhibitor, cell proliferation

SRV_00294_s_at protective protein for beta-galactosidase (galactosialidosis) proteolysis, protein transport
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regeneration were identified in this study. Thus, there was
no evidence of cell proliferation by spleen cells after ATV
infection.

Discussion and conclusion
Emerging infectious diseases are implicated in the global
decline of amphibians and other animals [3,49-51]. There
is urgent need to develop understanding of amphibian
immunological responses to pathogens and to identify
host genes that may be important in disease resistance.
Our study shows that functional genomics provides a
means to rapidly meet these needs. We infected Mexican
axolotls from the Ambystoma Genetic Stock Center with a
viral pathogen that is clearly affecting tiger salamander
populations in nature [10,13-15,19]. Our results show
that ATV infection induces transcriptional changes of
genes that are known to function in vertebrate immunity.
Below we discuss the transcriptional response in more
detail and suggest hypotheses to explain why ATV is often
lethal to axolotls and other tiger salamanders.

We detected significant gene expression changes 24 hours
post infection. Many of these gene expression changes
likely reflect transcription within lymphocytes, as they are
the predominant cell type in the spleen of juvenile and
adult axolotls [52]. Indeed, the functions of many of these
genes are associated with neutrophil, dendritic, and mac-
rophage cell functions, including cytokine signaling
(chemokine (C-X-C motif) receptor 4), phagocytosis and
destruction of phagocytised particles (disabled homolog 2,
mitogen-responsive phosphoprotein, neutrophil cytosolic factor
2, lysosomal-associated membrane protein 1, RAS homolog
gene family, member B), complement (complement factor B,
complement component 3), and inflammation (pentraxin
related gene, rapidly induced by IL-1 beta, cytochrome B-245
beta polypeptide, n-myc and STAT interactor). Up-regulation
of complement components that are known to function
in the removal of viral particles, and up-regulation of the
stress-associated transcription factor jun-b, clearly shows
that ATV induced a humoral gene expression response in
the axolotl. Further support for this idea was obtained by
comparing ATV-induced gene expression changes to
changes identified from a previous microarray experiment
using A. mexicanum and the same microarray platform.
Twenty-five genes that were up-regulated in response to
ATV infection were also identified as significantly up-reg-
ulated during regeneration [31]. In both microarray stud-
ies, blood was not perfused from tissues prior to tissue
collection and it is known that leukocyctes express genes
during the early wound-healing phase of spinal cord and
limb regeneration. Thus, it seems likely that many of the
early gene expression changes that we observed in
response to ATV-infection reflect a general, humoral tran-
scriptional response to stress.

In addition to this general humoral response, the gene
expression patterns that we observed suggest that the Mex-
ican axolotl manifests an antiviral transcriptional
response that is not unlike that observed in other verte-
brates. For example, ATV infection clearly induces an
interferon-mediated, antiviral response. Although probe
sets for interferon genes are not represented on the Gene-
Chip, we estimate based upon literature surveys that at
least 20% of the significant genes that we identified are
known in other systems (in vitro and in vivo) to be
involved in interferon-mediated transcription [53-55].
These genes exhibited some of the largest fold-changes
and include two primary transcription factors that com-
pete to activate (interferon regulatory factor 1, up-regulated)
and repress (interferon regulatory factor 2, down-regulated)
transcription of interferon-alpha and beta (Type 1 inter-
feron), and inferon-inducible genes that recognize and
degrade intra-cellular viral nucleic acid (interferon induced
with helicase C domain 1). Considering further that four of
the most highly enriched functional groups also con-
tained genes relating to the immune response and patho-
gen response, the results show that axolotls mount a
robust anti-viral response from 24–144 hours post-infec-
tion.

Given the robust immunological transcription response
that we observed, it is curious why ATV is so virulent to
tiger salamanders. In the closely related Ranavirus frog
virus 3 (FV3), larval Xenopus laevis succomb to FV3 but
adults effectively clear virons and develop lasting resist-
ance to future infection [56]. Adult resistance in X. laevis is
correlated with a significant proliferation of cytotoxic
CD8+ T cells in the spleen upon infection (within 6 days),
as well as increased mortality upon CD8+ T cell depletion
[30,57]. Mortality events due to ATV are more significant
among larvae in natural tiger salamander populations,
however metamorphosed adult tiger salamanders are
more susceptible than larvae to ATV infection in the lab
[18]. It is well established that Mexican axolotls have a less
complicated immune system and never develop the type
of mature immune response typical of amniote verte-
brates [21-29,52]. We did not observe any gene expression
changes that would indicate proliferative leukocyte
responses in axolotl spleen. Perhaps this is because we
used juvenile axolotls that are incapable of such a
response. However, it is also possible that ATV maybe
more resistant to the immune response mounted by A.
mexicanum than FV3 is to the Xenopus immune response.
Phylogenetic analyses indicate ATV is more closely related
to iridoviruses found in fish than to FV3, which suggests a
relatively recent host switch occurring with the introduc-
tion of sportfish to areas of the southwestern United
States [15]. Iridoviruses found in sportfish have a larger
genome and contain more ORFs related to immune eva-
sion than FV3, which could also be related to improved
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performance of this virus on the salamander host [15].
Further studies are needed to better understand the ontog-
eny of immunological responses in axolotls, the virulence
of different ranaviruses, and the role of innate versus
adaptive immunity in ATV infection.

Our study has identified hundreds of new candidate genes
for laboratory and field studies of stress and disease in
tiger salamanders. Significantly more gene candidates will
undoubtedly be discovered using a higher content, 2nd

generation microarray that is currently under develop-
ment. Genomic and bioinformatics tools make
Ambystoma a powerful system for wildlife disease research.
In particular, molecular information can be quickly cross-
referenced from a genetically homogeneous strain that is
available for laboratory studies (Mexican axolotl), to
other closely related tiger salamander species in North
America [20]. Such power is needed to quickly understand
how ATV and other pathogens are overwhelming amphib-
ian immune responses and causing population declines in
nature.
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