DNA replication/ amplification

Use of Polymerase Chain Reaction—PCR to Identify DNA Polymorphisms

Molecular Biology Lab 5 Part 2---analysis of PCR amplification fragments

Gels will have been prepared for electrophoresis of your PCR products. I prepared them as you did last time. 1% agarose in !X TAE buffer and added Ethidium bromide directly to the molten agarose.

We will include approximately half the class samples on each gel. Each gel will have a set of controls from individuals known to be +/+, +/-, or -/- for the Alu repeat at locus PV92.

PREPARATION OF SAMPLES

- 1. Find your PCR samples in the rack.
- 2. Pipette 25 μ l of your sample into a fresh microfuge tube.
- 3. Add 5 µl of loading dye to your sample.
- 5. Organize a plan for loading your gel and load your samples accordingly. (Include in your plan, 3 lanes for the control samples and load them)
- 6. Load standards for each gel.
 - 1)100 bp ladder (100, 200, 300, 400 etc.)
 - *Prepare it by adding 3 μ l of the ladder to 17 μ l of H₂0 and add an additional 5 μ l of loading dye.

RUNNING OF THE GEL

Assemble the gel and run ~80 volts for 40 minutes. (Keep an eye on the migration of the dyes).

PHOTODOCUMENTATION AND ANALYSIS

Carefully disassemble the gel rig and transfer the gel (in its casting tray) to a plastic tub. Photograph the gel (Super's lab). If time, we'll print a copy of the gel for everyone.

PV92 Genotyping/Discussion

As we discussed last time, PCR is a sensitive and extremely efficient way to amplify any region of DNA. Make sure you can sketch the basic mechanism of PCR starting with a double stranded region of DNA. What occurs in each of the 3 steps that are repeated 30-40 times. Describe how the number of copies of DNA are amplified logarithmically. Practice designing primers for a given sequence and estimate their melting temperatures. (Chapter 23 of your text).

Some Points to review.

Template preparation:

- 1. What was the purpose of the matrix solution we placed our cheek or hair cells in?
- 2. What was the purpose of the 56 degree C incubation?
- 3. What was the purpose of the 100 degree C (boiling) incubation?
- 4. What was left in the supernatant after the final spin? Prior to setting up the PCR.

PCR:

- 1. What are the ingredients needed to perform PCR?
- 2. Where did you obtain these ingredients?
- 3. Which ingredients are specific for amplification of PV92? Which are needed for PCR of any DNA region of interest?
- 4. What occurred during:
 - a. The 94 degree/2 minute step?
 - b. The 94 degree/1 minute step?
 - c. The 60 degree/1 minute step?
 - d. The 72 degree/2 minute step?
 - e. The 72 degree 10 minute step?
- 5. Which steps were repeated 40X
- 5. What was the purpose of the 4 degree hold?

Determine the outcome of the PCR genotyping lab:

The primers used in amplifying PV92 are known to lie 641 bp apart on chromosome 16 in a unique sequence of this region. Predict the amplification products from PV92 (with and without the Alu repeat). Predict how the controls will appear on a gel.

Post electrophoresis

- 1. Did the control templates work to amplify the PV92 locus? (Did there appear to be general problems in obtaining PCR amplified fragments?)
- 2. Do the controls reveal an expected pattern of PCR fragments?
- 3. Did your template work to amplify the PV92 locus? What is your genotype?